CGE Modeling in Korea: Past, Present, and Future

24 November 2022

Sang-Ho Nam
Adelman Institute for Economics
http://adelman-institute.org

Contents

- I. Introduction
- II. Past
- III. Present
- IV. Future
- V. Summary

I. Introduction

CGE modeling is useful for feedbacks and heterogenous behavior of agents

CGE Model: Computable General Equilibrium Model

- Computable data intensive, theoretical background
- General feedbacks, multi-sectoral, heterogeneity
- Equilibrium prices adjust to clear markets (a la Walras)

CGE Model becomes the preferred tool of economic analysis for governments, and policy makers to evaluate the general economy-wide impacts of proposed policy changes

Recent advances have also allowed CGE modelers to work in areas besides policy impact analysis

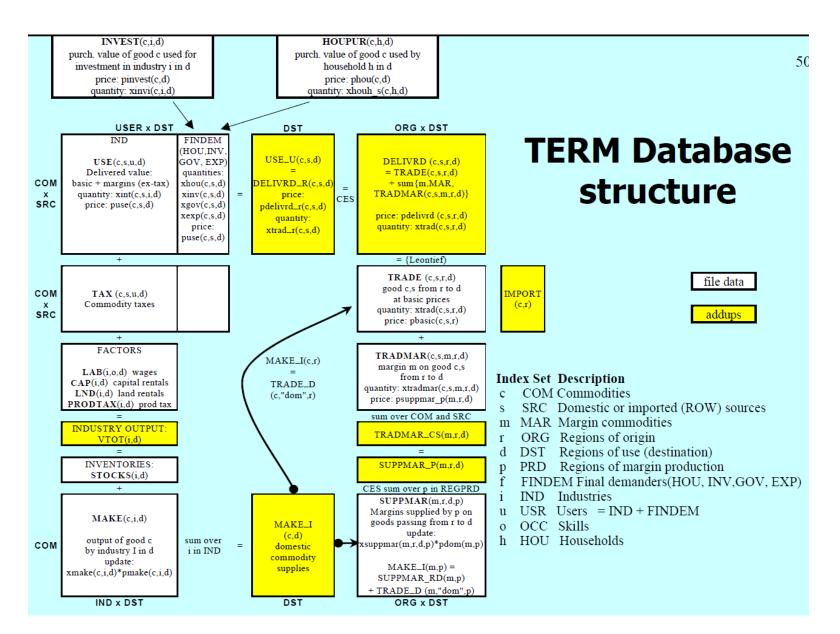
A. Database: Benchmark Equilibrium

SAM is a matrix representation of the national accounts

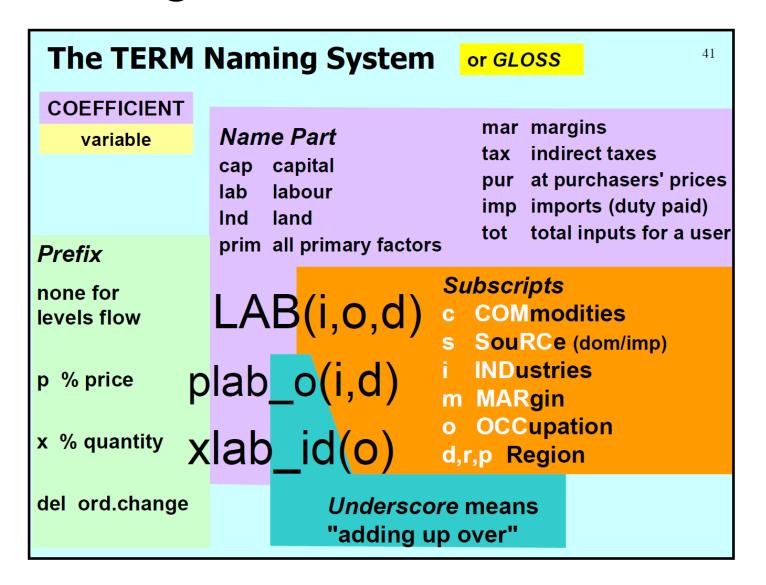
- It serves as a database for CGE Model
- Snapshot of the Economy Benchmark equilibrium

SAM requires Input-Output Table/Supply-Use Table, National Income Production Account, Labor Force Survey, Household Survey, etc.

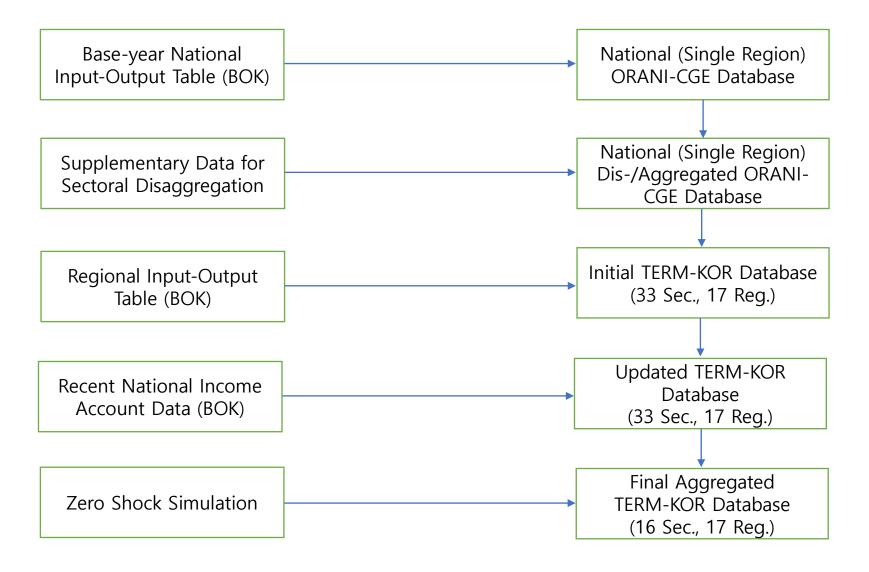
- But even these are not enough to assemble a typical SAM!
- Economic Outlooks, Population projection, Industry Reports, etc.


B. Structure of Social Accounting Matrix Database

	Activity	Commodity	Labor	Capital	Household/ Firm	Govern- ment	Capital Account	ROW	Total
Activity		Domestic Supply						Exports	
Commodity	Intermed. Demand				Hous. Consump.	Govt. Expend.	Investment		
Labor	Employee's Compen.							Factor Inc. (Labor)	
Capital	Operating Surplus							Factor Inc. (Capital)	
Household/ Firm			Comp. Employees	Operating Surplus	Trans to Hou/Ent.	Trans. to Hou/Ent.		Trans to Hou.	
Govern- ment	Indirect Tax (Net)	Import Tax			Income Tax/Corp. Tax			Trans. to Gov	
Capital Account	Deprec.				Priv. Sav.	Gov. Sav.		ROW Sav.	
ROW		Imports	Factor Pay (Labor)	Factor Pay (Enter.)	Trans. to ROW	Trans. to ROW			
Total									


C. Structure of ORANI Database (National DB)

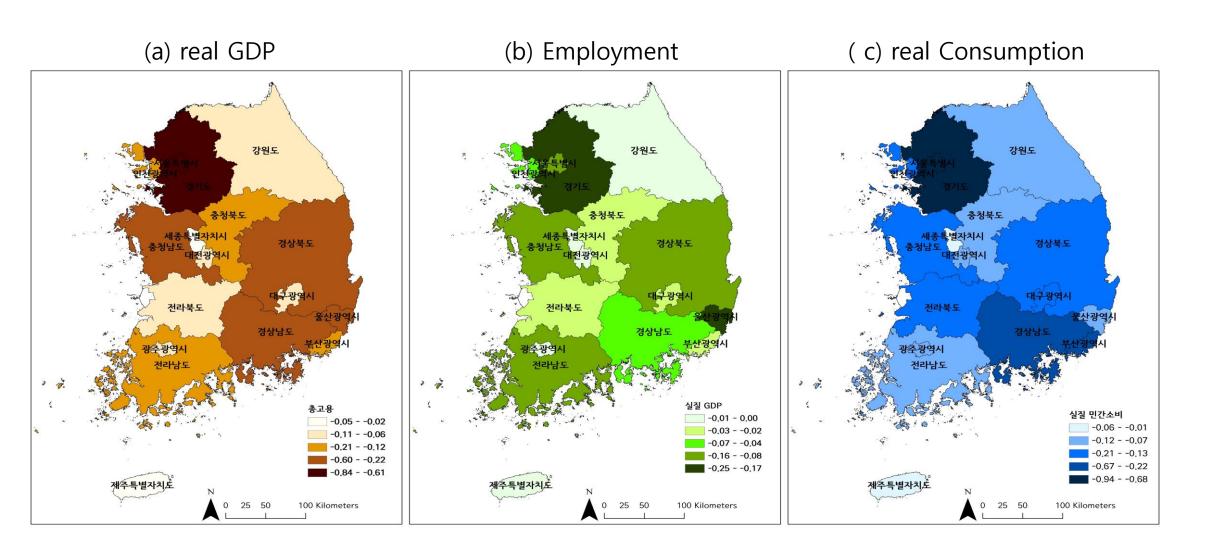
		Absorption Matrix							
		1	2	3	4	5	6		
		Production	Invest	Household	Export	Government	Inventory		
			← I →	← 1 →	← 1 →	← 1 →	← 1 →		
Basic Price	← × C× →	VIBAS	V2BAS	V3BAS	V4BAS	V5BAS	V6BAS		
Taxes	↑ c×s ↓	VITAX	V2TAX	V3TAX	V4TAX	V5TAX	Invent. Tax		
Labour	↑ 0 ↓	V1LAB	C = Commodity I = Industry S = Dom/Imp O = Labour type, Skilled/Unskilled - V2TAX = 0 - V4TAX = V5TAX = 0.						
Capital	↑ 1 ↓	V1CAP							
ProdTax	↑ 1 ↓	V1PTX							
OthCost	↑ 1 ↓	VIOCT							


Present: TERM Database Structure

Naming Convention for TERM DB

TERM-KOR Database Compiling Process

Present: Structure of ORANI Database (Multi-Regional DB)


		1	2	3	4	5	6
	차원	중간 투입 I	고정 투자 I	민간 소비 H	수출 1	정부 소비 1	재고 변화 1
BASD (기초가격)	C×S×	1,597.0	378.6	601.8	695.2	250.1	5.9
BASM (기초가격)	R	442.5	55.3	68.8	2.1	0.0	0.7
MARD (국내마진)	C×S×	86.4	10.3	70.7	19.7	0.0	0.0
MARM (수입마진)	M×R	24.0	1.4	8.3	0.1	0.0	0.0
TAXD (국내세)	C×S×	35.4	33.0	47.8	0.0	0.0	0.3
TAXM (수입세)	R	10.7	2.3	7.4	0.0	0.0	0.1
1LAB (피용자보수)	1×R	750.2					
1CAP (영업잉여)	1×R	751.1					
<u>10CT</u> (기타 생산비)	1×I	19.6					
합계		3,717.0	481.0	804.8	717.0	250.1	8.6

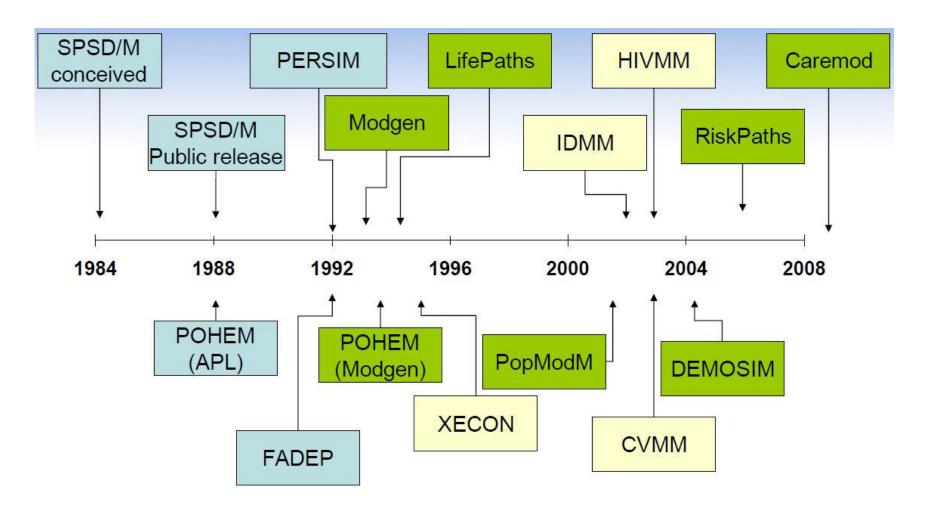
Note: C=commodity, I=industry, S=source, R=region, H=households, M=margin.

Application: Effects of COVID-19 (Regional Macro)

	-	· · - · - ·	<u> </u>	-			
	1	2	3	4	5	6	7
지역 구분	실질 민간소비	실질 투자	실질 수출	실질 수입	실질 GDP	총고용	소비자물가
1 서울	-0.68	-0.69	0.20	-0.15	-0.10	-0.61	0.04
2 인천	-0.18	-0.11	0.04	-0.12	-0.04	-0.16	0
3 경기	-0.94	-1.29	0.21	-0.77	-0.25	-0.84	-0.01
4 대전	-0.07	-0.07	0.02	-0.04	-0.01	-0.07	0
5 세종	-0.01	-0.02	0.01	-0.01	0	-0.02	0
6 충북	-0.09	-0.08	0.03	-0.11	-0.02	-0.12	0
7 충남	-0.16	-0.19	0.05	-0.36	-0.11	-0.25	-0.01
8 광주	-0.08	-0.05	0.03	-0.06	-0.01	-0.07	0
9 전북	-0.13	-0.08	0.04	-0.06	-0.02	-0.09	0
10 전남	-0.11	-0.11	0.06	-0.23	-0.10	-0.16	0
11 대구	-0.13	-0.10	0.04	-0.04	-0.02	-0.09	0
12 경북	-0.16	-0.19	0.06	-0.29	-0.08	-0.25	0
13 부산	-0.22	-0.12	0.06	-0.08	-0.03	-0.15	0
14 울산	-0.11	-0.10	0.02	-0.43	-0.17	-0.22	-0.01
15 경남	-0.24	-0.22	0.07	-0.23	-0.05	-0.22	-0.01
16 강원	-0.07	-0.07	0.05	-0.01	-0.01	-0.06	0
17 제주	-0.03	-0.03	0.02	0	0	-0.02	0

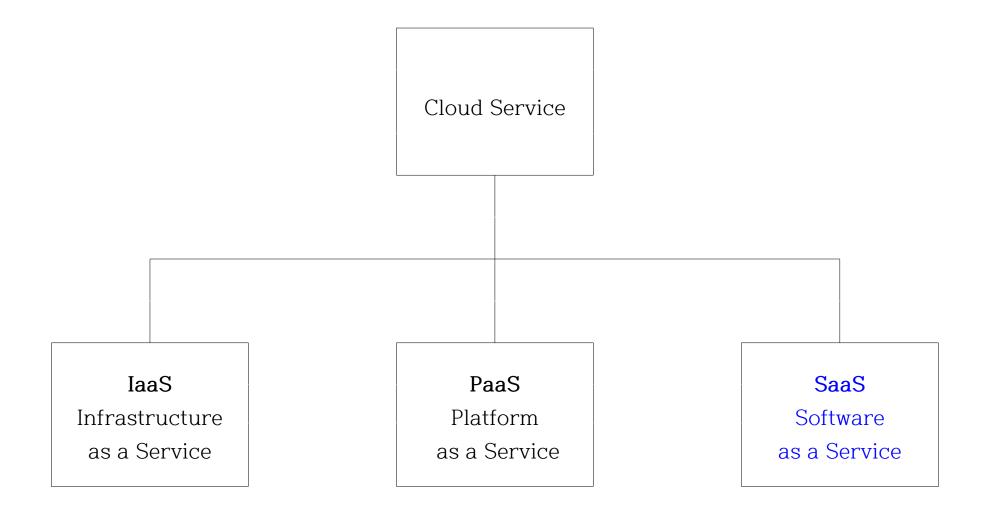
Application: Effects of COVID-19 (Regional Effects)

CGE + Micro-Simulation: How to?

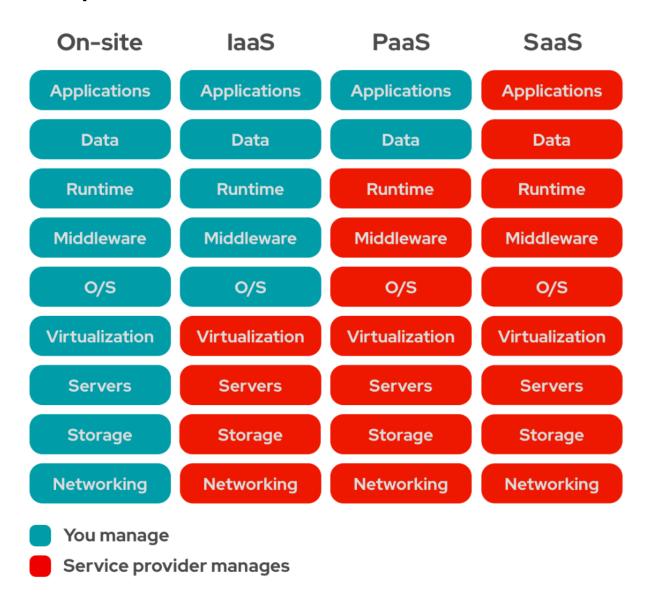

In order to analyze regional growth-employment-prices-consumptions, current Regional CGE Model (aka TERM-KOR) is good enough

 But for the policy issues such as income distribution, Poverty, and Polarization, reinforcing household heterogeneity is essential

A natural solution to this direction is to combine regional CGE model and Micro-simulation modeling technique


- Adapt some ideas/tools from Statistics Canada (for example, SPSD/M etc.)
- But we need huge computing power!

Development of the Canadian MS model



source: Spielauer, M. (2012), "Microsimulation and Public Policy: Issues and Prospects." http://www.spielauer.ca/Auckland_MS.pdf

Future: Types of Cloud Services

Comparison of Cloud Services

Cloud Market Trend

'Escape from 'on-premise' 개별 기업이 각각 서버를 구축하고 유지 및 관리할 필요가 없게 됨

Cloud 서비스에서는 서버 관리가 불필요 (업체에서 다 해주므로), 기본적으로 유선통신이므로 (해저 광케이블 이용) 거리에 따른 품질의 차이가 있음

• 소규모 start-up 기업이나 글로벌 기업 (가령, Netflix)에 적합

금년도 전세계 Cloud 시장 규모는 3,069억 달러 (350조 원), 그 중 약 1/3은 Cloud 구축에 사용

- 해외: Amazon AWS (32%), MS Azure (19%), Google GCP (7%), Alibaba (6%), 그 외 (37%). Big 3사가 전 세계의 60%를 차지하고 있음
- 국내: LG CNS, KT Cloud, Gabia Cloud, Kakao i-Cloud, etc.
- 2021년을 기준으로 국내 cloud 시장 점유율은 AWS 58.1%, GCP 14.2%, Naver 9.4%, Azure 5.5%, KT 2.2%, Oracle 2.1%, etc.

Quantum Computing?

Combining CGE Modeling + Micro-Simulation requires huge resources

- One possible solution is the quantum computing
- But there are lots of uncertainty in the future of quantum computing

Need to find more realistic alternative

- Amazon EC2 or MS Azure?
- What else?

Summary

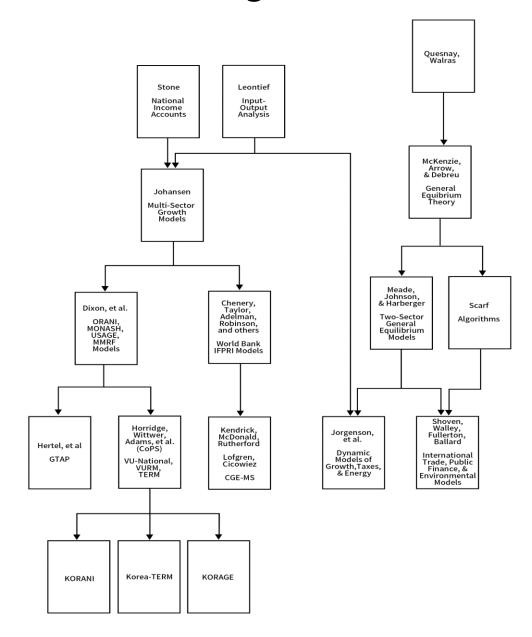
South Korea is the 16th country that uses Regional (IRIO) CGE Model

- TERM-KOR CGE model has 33 sectors and 17 regions for the South Korean economy
- 229 Sub-region classification in Top-Down manner, and thus can be used for detailed analysis for regional income distribution

The only limit is the availability of administrative data on small-area income level

- One possible area of applying CGE+MS is the safety income experiment of the City of Seoul
- The experiment is currently undergoing

Summary


Lots of other things can be done with Regional CGE model with Microsimulation

- Bottom-Up Regional CGE Model for 17 Metro/Do region is ready to use for the evaluation of public investment projects (such as the construction of new airport in Pusan)
- 229 Sub-SiGunGu province modeling is possible in a Top-Down manner

One possible way of extending applicability of TERM-KOR model is to use Administrative data for households/individuals for welfare policy

- This will be especially powerful in decreasing poverty and increasing policy effectiveness by targeting specific area for income support
- traditional tax-benefit analysis will benefit the most

Schematic Pedigree of the TERM-KOR Model

윤수호 박사의 지식 나눔

"공학연구자들이 스스로를 지키는 선명한 기준"

- 재현 가능한가?
- 기본 과학원리를 따르는가?
- 기존 기술보다 나은가?
- 논리 언어(자연언어, 수학)로 설명이 가능한가?
- 관계 언어(통계)로 검정하였는가?
- 역사적 맥락이 있는가?
- 치명(致命)적 요소는 없는가?
- 審美的인가?

"Art is a lie that makes us realize the truth." - Pablo Picasso

By Pablo Picasso - pablopicasso.org, Fair use, https://en.wikipedia.org/w/index.php?curid=54020107